Mechanism of SOA formation determines magnitude of radiative effects

نویسندگان

  • Jialei Zhu
  • Joyce E Penner
  • Guangxing Lin
  • Cheng Zhou
  • Li Xu
  • Bingliang Zhuang
چکیده

Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2 When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol

The oxidation of biogenic volatile organic compounds (BVOCs) gives a range of products, from semivolatile to extremely low-volatility compounds. To treat the interaction of these secondary organic vapours with the particle phase, global aerosol microphysics models generally use either a thermodynamic partitioning approach (assuming instant equilibrium between semi-volatile oxidation products an...

متن کامل

Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign

A volatility basis set (VBS) approach for the simulation of secondary organic aerosol (SOA) formation is incorporated in the online coupled atmospheric model system COSMO-ART and applied over Europe during the EUCAARI May 2008 campaign. Organic aerosol performance is improved when compared to the default SOA module of COSMO-ART (SORGAM) against high temporal resolution aerosol mass spectrometer...

متن کامل

Magnitude of vibration triggering component determines safety of structures

Transmission of blast waves is a complex phenomenon and the characteristics vary with blast design parameters and geo-technical properties of medium. Frequency of vibration and triggering component for structural excitation generally quantifies safe vibration magnitude. At closer distance or higher elevations than the blast locations, vertical or transverse component will be the first arrival t...

متن کامل

Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation – Part 2: Development of the chemical mechanism and atmospheric implications

Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found th...

متن کامل

Radiative heat transfer: many-body effects

Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2017